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Electrical breakdown in a liquid often plays a major role in contemporary pulsed-dis- 
charge materials processing technology. Thus, this phenomenon requires multifaceted study, 
and the question of formation and evolution of gas cavities and their role in discharge de- 
velopment is a principal one in the physics of high-voltage discharges in liquids [i, 2]. 
The present study will analyze the cavitation mechanism of gas cavity formation and evolu- 
tion in a point-plane electrode system for the prebreakdown stage of the discharge. A com- 
parison with experimental results of other authors [3] is presented. 

We will consider the growth of a cavitation bubble generated near the point electrode. 
We will assume that the bubble grows because of electrostatic forces while there exists a 
pressure P0 in the liquid, the pressure of ionized vapors within the bubble being small in 
comparison to this P0- Moreover, we neglect the effect of the electrodes on growth dynamics, 
i.e., we assume that the bubble grows within an unbounded ideal incompressible liquid. Using 
the experimental data of [3], we assume that the bubble surface always remains equipotential 
with a potential equal to the electrode potential ~0. It will be shown below that Laplacian 
pressure may also be neglected. With these assumptions we write the equation for the bubble 
radius in the form [4] 

/1R + (3/2) Jt 2 = (pe - -  P0)/P, Pe = ~/(8nkR2), k = t/4ne 0 

(where  Pe i s  t h e  e l e c t r o s t a t i c  p r e s s u r e  on t h e  s u r f a c e ) .  With t h e  a i d  of  s i m p l e  t r a n s f o r m a -  
t i o n s  i t  i s  e a s y  t o  o b t a i n  t h e  f i r s t  i n t e g r a l  o f  t h e  e q u a t i o n  

t po R3 ~ = const. 
Rs/~2 -5 p s~kp + 

Choos ing  as  i n i t i a l  c o n d i t i o n s  R = u ( t  = 0) = 0, R ( t  = 0) = R00 (where  R00 i s  t h e  r a d i u s  o f  
c u r v a t u r e  o f  t h e  e l e c t r o d e ) ,  we o b t a i n  f o r  t h e  b u b b l e  g rowth  r a t e  an e x p r e s s i o n  in  d i m e n s i o n -  
l e s s  form:  

= [ t  [ r  (1)  u(R)luo o ,  

u~ i f  P . . . .  o 8~kPoR~o 

(where  R i s  measured  in  u n i t s  o f  R 00) .  The f u n c t i o n  u(R) has  a maximum a t  t h e  p o i n t  R m = 
3 /2  - 1 / ( 2 r  I t  i s  o b v i o u s  t h a t  ~02 > 1 /3maxR m = 3 / 2 .  As ide  f rom t h e  p o i n t  R = 1, t h e  
f u n c t i o n  u(R) v a n i s h e s  a t  t h e  p o i n t  

n ,  = 1/3 t14)-  112. ( 2 )  

The value of R l obtained here is the limiting size of an expanding spherical bubble. We 
will also find the limiting bubble growth rate, defining the same as u(maxR m) =- u m. Then 

= 2 (r _ ( 3 )  o o  

I t  i s  e v i d e n t  f rom Eqs.  (2 )  and (3)  t h a t  a c a v i t a t i o n  r eg ime  o f  bubble '  g rowth  i s  p o s s i b l e  a t  
~ > 1. At an a t m o s p h e r i c  p r e s s u r e  P0 t h i s  y i e l d s  a f i e l d  i n t e n s i t y  E > 1 .8  NV/cm. F i g u r e  1 
shows f u n c t i o n s  u(R) in  d i m e n s i o n l e s s  u n i t s  f o r  r = 4 and 30 .2  ( c u r v e s  1 and 2 ) .  Curve 2 was 
c o n s t r u c t e d  f o r  n - h e x a n e  p a r a m e t e r s  and P0 = 10s Pa,  ~P0 = 33 kV, R00 = 0 .04  r ~ ,  as  used  in  
t h e  e x p e r i m e n t s  o f  [ 3 ] .  The maximum b u b b l e  g rowth  r a t e  f o r  t h e s e  p a r a m e t e r s  i s  ~34.8 m/ see .  
A c c o r d i n g  t o  t h e  measuremen t s  o f  [3]  t h i s  v a l u e  r e a c h e s  50 m/ see .  
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To obtain the function R(t) Eq. (i) was integrated numerically. The integration results 
for @o2 = 30.2 are shown in Fig. 2a in dimensionless variables. The dimensionless time x = 
tu0/R00 here. Lines i and 2 correspond to limiting and equilibrium values of bubble radius. 
The equilibrium value is determined by the equation of force (pressure) balance and is equal 
to R = @0. The dimensioned time of bubble growth to the equilibrium radius is ~8 usec, to the 
limiting radius, ~38 ~sec. According to the measurements of [3], the bubble doubles its 
initial radius over a time of ~2 ~sec. Calculations with the integration results (Fig. 2a) 
gives a radius-doubling time of ~1.8 ~sec. Figure 2b shows the function R(~) in logarithmic 
scale. It is evident that in the initial growth stage R ~ t 2, for 1.5 < r < 7 (segment 2) 
R ~ t ~ In [3] the experimentally determined growth exponent for segment 2 was equal to 
0.6. 

In [3, 5] the. development of streamers in a certain stage of spherical cavity growth 
was related to development of instability of the liquid surface in the electric field. How- 
ever no stability study was performed. In [6] in a study of a globe lightning model it was 
shown that equilibrium of a spherical gas cavity formed in a charged liquid shell cannot be 
stable with respect to perturbations of the surface grooving type. 

We will analyze the stability of a spherical equilibrium cavitation cavity with charged 
surface in a manner analogous to that of [6]. We then assume that at the moment when in- 
stability becomes possible the perturbations increase more rapidly than the mean cavity ra- 
dius. Then the state of the cavity can be considered quasiequilibrium with a radius R 0 having 
a potential ~0 with constant charge Q0-- ~0/~0/k. We will perform the stability study by the 
Rayleigh method [7], considering that, in contrast to a droplet, upon surface deformations 
the cavity can change its volume. We write the equation of the perturbed surface in the form 

/~-----R~ i + n=1 ~ anP~(cosO))(where Pn are Legendre polynomials,)i. 

We write the potential energy of the cavitation bubble 

t (~V(PedS ~ ,., f W = - - - 2 - Q o 3 . ~ + c ,  d S +  pdV, (4 )  

where ~e is the potential energy in the liquid, p is the energy in the liquid, whose values 
satisfy the Laplace equation (in view of what has been said above, we consider the liquid 
immobile). The solutions of the Laplace equation satisfying conditions at infinity have the 
form 

oo 

= ~ / . ~  \ n + l  

q)e fPO'Or -~ ~0 ~Ani '~r O) /On (COS 0),, 

o o  

? t : l  

From the condition of surface eqqipotentiality V~eT = 0 (where T is a unit vector tangent 
to the surface) we find A n = a n . From the condition of pressure continuity PlR = (Pe - Ps 
(where Pe and ps are the electrical and Laplace pressures) we obtain 

B~=a~  4nkpoR ~ ( n - - l ) - -  a nopo (n ~ + n -- 2) . 
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For stability of equilibrium it is necessary that the second variation of the potential 
energy be positive. Calculating the integrals in Eq. (4) to the accuracy of a~ and trans- 
forming to dimensionless variables, we find the stability condition 

[~-~ i ( n 2 + n + 2 ) ] +  t E (n -- l) (n -- 2) (n + 2 ) @ y  

+ 2)] (s) 

The function ~,(n) has a minimum, with n m being the number of the most dangerous spherical 
harmonic. For X ~ I it develops that n m ~ i and n m = (6/k) I/3, which corresponds to groov- 
ing of the cavity surface. Thus, in contrast to a charged droplet, for which the most dan- 
gerous mode with respect to stability is the ellipsoidal (n = 2), for a charged cavitation 
cavity within a liquid higher spherical harmonics are the most dangerous. Growth of the most 
dangerous perturbations can stimulate development of a finite number of streamers N. From 
general considerations it is clear that the perturbation growth increment is proportional 

to \~0-~ (where m is the reduced mass), i.e., is proportional to the square root of 

the potential energy variation. Since the latter is maximal for n y nm, then the most dan- 

gerous perturbations have the largest increment and a number of streamers N ~ n m. Consider- 
, 2  noo 

ing that ~)~R~/R0=~I and ~PoRoo]To~ one can calculate the critical values of the dimen- 
sionless potential @~, and nm, using Eq. (5) and the experimental parameters of [3]. Taking, 
as before, R00 = 0.04 mm and ~ = 1.84"10 -2 N/m (n-hexane [8]), we find k = 4.6"10 -2 (R00/R 0) 

and 
(1 )~ ,=4 .3 . t0  -2, n ~ = i t ,  R0=R0o;  

~ ,  = 5.5.10 -~, n~ = t2, R o = t ,5R~. (6 )  

The f u n c t i o n  r  f o r  R o = Ro0 i s  shown in  F i g .  3. S i n c e  f o r  f o r m a t i o n  and growth  o f  
a cavitation cavity it is necessary that r > i, it is then evident from Eq. (6) that growth 
occurs in a regime intensely supercritical with respect to stability of spherical quasi- 
equilibrium. But since perturbations increase at a finite rate, then in the initial period 
(at least from the time of cavity formation up to R 0 = 1.5R00) its surface may remain quasi- 
spherical and only subsequently do perturbations appear and streamers develop. It was ob- 
served in the experiments of [3] that at R 0 = 0.2 mm the wave number of increasing perturba- 
tions k = 500 cm -l This corresponds to n = kR 0 = i0. From Eq. (6) we have n m = ii. 

Thus, comparison of the proposed theory with experimental data permits the hope that 
a cavitation mechanism is responsible for formation of a high-voltage (E > 1.8 MV/cm) streamer 
breakdown in liquid dielectrics. 

The author thanks all the participants in the Perm' hydrodynamic seminar conducted by 
G. Z. Gershuni and E. M. Zhukhovitskii for their most useful evaluation of the study. 
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